SHORT COMMUNICATION

K. Balamurugan · H. Abdel-Rehman · G. T. Duncan B. Budowle · S. Anderson · J. Macechko · M. Tahir

Distribution of D1S80 alleles in the Jordanian population

Received: 20 August 1997 / Received in revised form: 10 November 1997

Abstract This study demonstrates that the locus D1S80 is highly polymorphic, with 24 different alleles and 66 genotypes in 215 Jordanians. This data set conforms to Hardy-Weinberg expectations(HWE).

Key words D1S80 locus · VNTR · Allele frequency · Jordanian population

Introduction

Population data on the D1S80 locus can be useful for forensic, paternity testing and evolutionary studies [1-3]. This paper presents allele frequency data for the D1S80 locus in the Jordanian population.

Materials and methods

Blood samples from 215 unrelated Jordanians were collected, dried stains prepared and DNA was extracted as described previously [4]. Amplification and typing was carried out using standard protocols. The frequency of each allele was calculated and conformity to Hardy-Weinberg expectations (HWE) was determined as described previously [1].

K. Balamurugan · S. Anderson · J. Macechko · M. Tahir (☒) Indianapolis-Marion County Forensic Services Agency, 40 South Alabama Street, Indianapolis, Indiana 46204, USA Tel. + (317) 327-7307; Fax + (317) 327-3693

H. Abdel-Rehman

Dept. of Forensic Medicine and Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan

G. T. Duncan

Department of Biology, Florida International University, University Park Campus, Miami, Florida 33199

B. Budowle

Forensic Science Research and Training Center, FBI Academy, Quantico, Virginia 22135

Results and discussion

This study demonstrates that D1S80 is highly polymorphic in the Jordanian population (Table 1). There were 24 different D1S80 alleles and 66 genotypes observed in 215

Table 1 Allele frequencies in the Jordanian population

Observed homozygosity =

Expected homozygosity

HWE-homozygosity test

and Exact test (p = 0.155)

(unbiased) = 0.194

(p = 0.209)Likelihood ratio test

(p = 0.200)

0.228

Allele	Frequency (%)
< 14	0.23
14	0.23
15	0.00
16	0.23
17	0.00
18	16.05
19	0.23
20	1.16
21	4.42
22	5.12
23	1.63
24	38.84
25	3.49
26	2.33
27	0.47
28	6.98
29	5.81
30	0.47
31	5.58
32	1.40
33	0.00
34	0.93
35	0.23
36	0.47
37	0.70
38	0.00
39	0.23
40	0.00
41	0.00
> 41	2.79
Total	100.02

the data are in agreement with HWE (Table 1).

References

- 1. Sajantila A, Budowle B, Strom M, Johnsson V, Lukka M, Peltonen L, Ehnholm C (1992) PCR amplification of alleles at the D1S80 locus:comparison of a finnish and a north american caucasian population sample, and forensic casework evaluation. Am J Hum Genet 50:816-825
- Jordanians. The observed heterozygosity was 77.0% and 2. Budowle B, Baechtel F, Smerick J, Presley K, Giusti A, Parson G, Alevy M, Chakraborty R (1995) D1S80 population data in african americans, caucasians, southeastern hispanics, southwestern hispanics, and orientals. J Forensic Sci 40:38-44
 - 3. Duncan G, Balamurugan K, Budowle B, Smerick J, Tracey M 1997) Microvariation at the human D1S80 locus. Int J Legal Med 110:150-154
 - 4. Budowle B, Waye JS, Shutler GG, Baechtel FS (1990) Hae III-A suitable restriction endonuclease for restriction fragment length polymorphism analysis of biological evidence samples. J Forensic Sci 35:530-536